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Abstract Introduction 

Methods are described for exploiting the symmetry of 
uniaxial space groups containing rotation axes of order 
three and higher to improve the efficiency of computa- 
tion of Fourier transforms. Mapping a symmetrical two- 
dimensional section into four dimensions enables the se- 
lection of non-contiguous asymmetric units over which 
fast Fourier transforms can be performed that reduce the 
computation time by a factor of approximately the order 
of the rotation axis. The application of the procedure to 
plane group p3 and its extension to p4 and p6 are de- 
scribed. 
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Diffraction intensities and atomic distributions in crystals 
are related to one another by Fourier transforms, which 
therefore play a major role in structural crystallography. 
Because of this a large fraction of the work on computa- 
tional methods, throughout the history of the application 
of diffraction techniques to crystallography, has been di- 
rected toward improving the efficiency of computation of 
Fourier transforms. A major advance came with the de- 
velopment by Cooley & Tukey (1965; also Gentleman & 
Sande, 1966) of a procedure that has become known as the 
fast Fourier transform, or FFT. Whereas previously used 
methods had required numbers of operations proportional 
to the square of the number of Fourier coefficients, N, the 
number of operations required by the FFF procedure is 
proportional approximately to N log N, which, for mod- 
erately large values of N, increases only slightly more 
rapidly than linearly with increasing N. 

Further savings in both time and computer capacity 
can be achieved if a FFT routine can make use of space- 
group symmetry to avoid storing redundant data and 
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performing redundant computations. The application of 
space-group symmetry to FFT routines was discussed by 
Ten Eyck (1973), who classified space groups as 'solved' 
or 'almost solved', depending on whether all or almost 
all of the redundancy could be eliminated. All tficlinic, 
monoclinic and orthorhombic space groups can be solved 
(even P1, because of Friedel's law, requires only half of 
the possible structure factors) and many of the uniaxial 
space groups that contain screw axes can also be solved 
or almost solved. As long as asymmetric units can be de- 
fined that extend the entire length of the unit cell in all 
three dimensions, which essentially means that no two- 
dimensional section contains rotation symmetry of order 
three or higher, computation of a density map from a 
unique set of structure factors, or computation of structure 
factors by inversion from an asymmetric unit of a den- 
sity map, is fairly straightforward. For example, in space 
group P41 the output of two-dimensional transforms of 
sections in the r eg ion0<  z <  1,0_< y <  1 , 0 _ < z  < 
1/4 contains all of the information necessary for input to 
one-dimensional transforms along rows parallel to z in the 
region0_< z _< 1/2,0_< y_< 1/2,0_< z < 1,butin 
space group P4 there is no way to choose an asymmetric 
unit that extends the entire length of the unit cell in the a 
or b direction. 

Wilson (1988, 1990) has studied the distribution of 
space groups in which organic molecules crystallize and 
has shown that crystals with high-order rotation axes, 
presumably because of packing problems, are extremely 
rare. However, proteins are known that crystallize in 
such space groups as P63 (McRee, Tainer, Meyer, Van 
Beeumen, Cusanovich & Getzoff, 1989) and P6322 
(Sussman, 1992) and symmetrical molecular complexes, 
such as viruses, can crystallize in space groups with 
higher-order rotation axes, which suggests that there is 
a practical need to address the problem of FFT routines 
that exploit the symmetry properties of space groups con- 
taining higher-order rotation axes. In this paper we show 
that, tinder certain easily satisfied conditions, it is in fact 
possible, by defining an asymmetric unit that is not con- 
tiguous, to perform a FFF whose time and memory re- 
quirements are reduced from those of the entire unit cell 
by a factor that is close to the order of the group for space 
groups that contain threefold rotation axes. We shall em- 
phasize a procedure for the two-dimensional space group 
p3, which then can be incorporated in procedures for 
three-dimensional space groups containing threefold ro- 
tation axes and 63 screw axes. We conclude with a brief 
discussion of the extension of the procedures to fourfold 
and sixfold rotation axes. 

Definitions 

1. For a positive integer N the ring of integers mod- 
ulo N, denoted by Z / N ,  is the set of integers {0, 1 . . . . .  
N - 1 }, with all arithmetic operations defined modulo N. 

2. For two sets of numbers, X and Y, the Cartesian 
product of X and Y, denoted by X x Y, is the set of 

ordered pairs (z, y) such that z includes all elements of 
X, and y includes all elements of Y. 

x × Y = {(x, y)lx e x , y  Y}. 

3. For positive integers N1 and N2, Z/N1 x Z/N2 is 
the Cartesian product of Z/N1 and Z/N2, with compo- 
nentwise arithmetic defined modulo NI and N2, respec- 
tively. 

4. The concept of Cartesian product extends to any fi- 
nite number of factors. In particular, Z/N1 x Z/N2 x 
Z/N3 is the ordered set {(N1, N2, Na)INj E Z /Nj  , j = 
a,2,3).  

5. We shall use the elements of Z/N1 × Z/N2 and 
Z/NI  x Z/N2 × Z/N3 to label the nodes of a sublattice 
within a unit cell in two and three dimensions, respec- 
tively. A function defined at the nodes of this sublattice 
will be referred to as an associated function. 

6. Two positive integers are relatively prime if they 
have no common factor greater than 1. 

Consider a crystal whose structure conforms to the 
symmetry of a space group, G. A set of sublattice nodes 
that are equivalent under the operations of G is an orbit, 
and an associated function will have the same value at 
each node of an orbit. A subset of the nodes that contains 
one node from each orbit in the unit cell is an asymmetric 
unit. A space group is said to act diagonally if all matri- 
ces in a two- or three-dimensional representation of the 
group are diagonal, so that, within an orbit, x coordinates 
depend only on z coordinates, y coordinates depend only 
on y coordinates, and z coordinates depend only on z co- 
ordinates. Ten Eyck (1973) showed that efficient FFT pro- 
cedures can be described if the space-group symmetries of 
all two-dimensional sections act diagonally. 

The Chinese remainder theorem 

Several consequences of a result known as the Chinese 
remainder theorem play a major role in the development 
of algorithms for FVI's with higher-order rotation axes. 
Consider a composite number N = N1 N2 and define a 
mapping from Z / N  to Z/N1 x Z/N2 by 

M(x) = (z mod N1, x mod N2). 

M(x) associates an element x in Z / N  with an ordered 
pair (Xl, x2) in Z/N1 × Z/N2. For a pair of elements, 
both in Z/N ,  it is readily verified that 

M(x + y) = ([x + y] rood N1, [x + y] mod N2) 

= M ( x ) + M ( y ) .  

M(zy) = (zy m o d N l , x y  mod N2) 

= M(x)M(y). 

Thus the mapping preserves the arithmetic structure of 
the rings and is an example of ring homomorphism. If 
a homomorphic mapping is invertible, that is if there is 
also a unique correspondence between (z l, x2) and z, the 
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Table 1. Chinese remainder theorem mapping between 
Z /2  x Z/5  and Z/IO 

X2 
Zl 0 1 2 3 4 
0 0 6 2 8 4 
1 5 1 7 3 9 

tings are said to be isomorphic. The rings Z/N1 N9 and 
Z/N1 x Z/N2 are not in general isomorphic. 

The Chinese remainder theorem states that, if N1 and 
Ng. are relatively prime, there exists a unique pair of 
elements of Z/NIN2,  el and e2, known as the system 
ofidempotents corresponding to the factorization N~ N2, 
such that el mod N1 = 1; el mod Ng. = 0; e2 mod N1 = 
0; e2 mod N2 = 1. It is readily verified that the set 
{el, e2} has the following additional properties. 

1. (el + e2) mod N1N2 = 1; 
2. ele2 mod N1N2 = 0; 
3. e~ mod N1N2 = el; e~ mod N1N2 = eg.. 
From these properties it follows that 

M-X(Xl,X2)=(zlel  +z2e2) mod N 

is a unique mapping from Z/N1 x Z/N2 into Z/N1 N2 
inverse to the mapping M(z), and these tings are therefore 
isomorphic. Table 1 shows an example of this mapping for 
which N1 = 2; N2 = 5. For this case e~ = 5 and e2 = 6. It 
is apparent from inspection of the pattern that the fact that 
2 and 5 are relatively prime is a necessary (and sufficient) 
condition for the mapping to be unique. 

Diagonalization of space group p3 

Although it is possible to construct a one-dimensional 
faithful representation of point group 3 using complex 
numbers, the smallest faithflfl representation (Prince, 
1982) using real numbers (electron density must be invari- 
ant under real transformations) is two-dimensional. The 
representation referred to crystal axes, with a 7 angle of 
120 ° , is 

(1 O)(0-1 )(-1 1) 
0 1 ' 1 - 1  ' - 1  0 ' 

which is not diagonal. If the number of grid points along a 
cell edge can be factored into two relatively prime factors, 
however, the Chinese remainder theorem may be used to 
map the two-dimensional unit cell in space groupp3 into a 
four-dimensional unit cell in which asymmetric units may 
be chosen that satisfy the conditions for performing a FFT 
that contains all of the information required to compute 
the transformation over the full cell. The procedure goes 
as follows: 

1. Map the grid points (z, y) in Z/N1 N2 × Z/N1 N2 
into (Z/N1 x Z/N2) x (Z/N1 x Z/N2), giving 
((Zl, x2), (Yl, yg.)). (Note that if N1 and ?72 are relatively 
prime, N} and N~ are also.) 

2. Interchange z2 and yl, giving ((zl, yl), (z2, y2)) in 
(Z/N1 x Z/N1) x (Z/N2 x Z/N2). 

3. Choose an asymmetric unit that extends the entire 
range of (zl,  yl) and Fourier transform it. 

4. The output of this FFT contains all of the information 
required to fill in the transform of the entire cell. From this 
choose an asymmetric unit that contains the entire range 
of (:~2, y2) [this procedure is known as orbit exchange 
and it is equivalent to the procedures described by Ten 
Eyck (1973) for space groups that are 'solved' or 'almost 
solved'] and transform it. 

5. Perform the inverses of the transformations in steps 
2 and 1 to recover the transform of the original (z, y). 

To clarify how this procedure works in practice, con- 
sider again the case of N1 = 2, N2 = 5, so that the unit 
cell inp3 is 10 × 10. The 100 points divide into 34 orbits, 
with the one at (0, 0) being degenerate because of the spe- 
cial position. [Note that if the grid size had contained 3 
as a factor, there would have been three degenerate orbits 
because of the special positions at (1/3,2/3) and (2/3,1/3).] 
Fig. 1 shows a 10 × 10 unit cell, with the grid points la- 
beled by the numbers from 0 to 33 according to p3. Table 
2 shows the remapping into a 2 × 2 × 5 × 5 four-dimen- 
sional space. Each entry in the table gives the orbit num- 
ber and the coordinates of the points in the original cell 
that mapped to that point. The (z2, y2) rows of the table 
have been ordered according to a rule described by An, 
Tian & Tolimieri (1992), which emphasizes the underly- 
ing threefold symmetry. Examination of the table reveals 
that the rows divide the cell into 25 interpenetrating 2 × 2 
lattices and the columns divide it into four interpenetrat- 
ing 5 × 5 lattices. The second, third and fourth columns 
each contain one member of each of 25 orbits and they 
are transformed from one to another by the threefold ro- 
tation. It is also apparent that the first nine rows and the 
first two columns contain sufficient asymmetric units to 
allow computation of the full transform. The first row and 
the first column, which contain the point (0, 0), are sub- 
sets of the full cell with all of its symmetry. An algorithm 

0 1 2 3 4 5 6 7 8 9 0 
9 11 13 15 17 19 21 23 11 1 9 

8 23 25 27 29 31 25 13 2 10 8 
7 21 31 33 33 27 15 3 12 22 7 

6 19~9 33 39 17 4 14 34 30 6 
5 172731  19 5 1 6 2 6 3 0  18 5 

4 152521  6 1 8 2 8 3 2 2 8  16 4 
3 13 23 7 20 30 32"32 26 14 3 

2 11 8 22 24 26 28 30 24 12 2 
1 9 10 12 14 16 18 20 22 10 1 

0 1 2 3 4 5 6 7 8 9 0 

Fig. 1. A 10 x 10 unit cell with the grid points labeled by or- 
bit numbers from 0 to 33 according to the two-dimensional 
space group p3. The positions of threefold axes other than 
the comers of the cell are shown. 
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Table 2. Chinese remainder theorem mapping from a 
10 x 10 unit cell with p3 symmetry into a 2 x 2 x 5 x 5 

unit cell in four-dimensional space 

(xl, Yl) 
(x2, y2) (o,o) (1,0) (o,1) (1,1) 

(0,0) 0(0,0) 5(5,0)  5(0,5) (5,5) 
(1,0) 6(6,0) 1(I,0) 16(6,5) 17(1,5) 
(3,1) 24(8,6) 33(3,6) 22(8,1) 12(3,1) 
(3,0) 8(8,0) 3(3,0) 30(8,5) 31(3,5) 
(4,3) 29(4,8) 10(9,8) 20(4,3) 14(9,3) 
(4,0) 4(4,0) 9(9,0) 19(4,5) 18(9,5) 
(2,4) 25(2,4) 32(7,4) 13(2,9) 23(7,9) 
(2,0) 2(2,0) 7(7,0) 27(2,5) 26(7,5) 
(1,2) 28(6,2) 11(1,2) 15(6,7) 21(1,7) 
(4,4) 6(4,4) 16(9,4) 17(4,9) 1 (9,9) 
(3,2) 24(8,2) 22(3,2) 12(8,7) 33(3,7) 
(2,2) 8(2,2) 30(7,2) 31(2,7) 3(7,7) 
(4,1) 29(4,6) 20(9,6) 14(4,1) 10(9,1) 
(1,1) 4(6,6) 19(1,6) 18(6,1) 9(1,1) 
(2,3) 25(2,8) 13(7,8) 23(2,3) 32(7,3) 
(3,3) 2(8,8) 27(3,8) 26(8,3) 7(3,3) 
(1,4) 28(6,4) 15(1,4) 21(6,9) 11(1,9) 
(0,1) 6(0,6) 17(5,6) I(0,1)  16(5,1) 
(4,2) 24(4,2) 12(9,2) 33(4,7) 22(9,7) 
(0,3) 8(0,8) 31(5,8) 3(0,3) 30(5,3) 
(2,1) 29(2,6) 14(7,6) 10(2,1) 20(7,1) 
(0,4) 4(0,4) 18(5,4) 9(0,9) 19(5,9) 
(1,3) 25(6,8) 23(1,8) 32(6,3) 13(1,3) 
(0,2) 2(0,2) 26(5,2) 7(0,7) 27(5,7) 
(3,4) 28(8,4) 21(3,4) 11(8,9) 15(3,9) 

described by An, Tian & Tolimieri (1992) allows further 
reduction in the transform of the first column, taking ad- 
vantage of its symmetry. Note, however, that if the cell 
were 20 x 20 rather than 10 x 10, the asymmetric unit 
would require six columns out of sixteen, and still higher 
powers of 2 would come even closer to the ideal of requir- 
ing only one third of the computational effort. 

Higher-order rotation axes 

Although Wilson's (1990) studies suggest that rotation 
axes of order higher than three rarely, if ever, occur in 
crystal structures of organic compounds, it is of some in- 

terest to consider under what conditions the techniques 
applied to p3 may be extended to p4 and p6. From 
Table 2, it is apparent that one of the reasons the technique 
works for p3 with N1 = 2 and N2 = 5 is that the symme- 
try operators cycle the coordinates of equivalent points 
among the parity combinations odd-odd, odd-even and 
even-odd, thereby ensuring that the points lie in disjoint 
sets. A similar two-dimensional real faithful representa- 
tion of point group 4 is 

(10)(0 , ) ( ,  0)(01) 
0 1 ' 1 0 ' 0 - 1  ' - 1  0 " 

I fa  unit cell inp4 is subdivided by a 10 x 10 grid, two 
undesirable things happen. First, the sample includes the 
fourfold special position at (1/2,1/2) and the twofold spe- 
cial positions at (1/2,0) and (0,1/2), so that there are three 
degenerate orbits and, even more importantly, the group 
operations do not change the parities of the coordinates, so 
that, although even-odd and odd-even interchange, odd- 
odd, as well as even-even, forms a fully symmetric set 
of its own. If, however, the unit cell is subdivided by a 
15 x 15 grid, so that N1 = 3 and N2 = 5, the 225 points, 
in 57 orbits, divide into nine interpenetrating 5 x 5 lat- 
tices or 25 interpenetrating 3 x 3 lattices, and three out of 
nine columns or seven out of 25 rows of a table similar 
to Table 2 would form sufficient asymmetric units. This 
suggests that for efficient computation of FFFs the factors 
N1 and N2 of the subdividing grid should be relatively 
prime not only to each other but to the order of the rota- 
tion axis. The smallest number for p4 is therefore 15, and 
the smallest number for p6 would then be 35. 
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